
iDSpeedy
An Incremental Extension of iDFlakies

Gabriel Darnell
 Electrical and Computer Engineering

University of Texas at Austin
 Austin, TX, USA

 gdarnell@utexas.edu

Abel Philips
 Electrical and Computer Engineering

 University of Texas at Austin
 Austin TX, USA

abel.philips@utexas.edu

ABSTRACT
Flaky tests are an issue in almost all software projects.
Many flaky test tools have been developed to identify and
sometimes solve these problems. Ideally, these tools would
be integrated into an industrial pipeline to identify flaky tests
after each commit.

This paper presents iDSpeedy, an extension of a current
flaky test tool, iDFlakies. iDSpeedy takes iDFlakies current
functionality and adds an incremental runner that allows the
iDFlakies framework to work across versions of a project.
This approach retains the accuracy of iDFlakies while also
decreasing runtime by amortizing the cost of a full run of
iDFlakies over multiple commits.

We evaluate the success of our tool by looking at its
accuracy compared to iDFlakies, its runtime over versions
compared to iDFlakies over one version, and its runtime
over versions compared to iDFlakies over multiple versions.

We conducted three separate experiments to evaluate the
accuracy and runtime differences between iDSpeedy and
iDFlakies. We selected nine projects from the iDFlakies
dataset to use in our evaluation [1]. Our evaluation showed
that iDSpeedy retained similar accuracy to iDFlakies and a
similar runtime to iDFlakies across multiple versions of a
project. This shows that we successfully extended iDFlakies
to be implemented incrementally.

CCS CONCEPTS
• Flaky Test • Order-dependent tests • Software Testing

KEYWORDS
Flaky Test, CICD Pipeline, Order Dependent Tests

1​ INTRODUCTION
As the scale of software projects has become more
complex, their test suites have grown increasingly larger. In
these large test suites, one can often find tests that
non-deterministically pass or fail on the same version of the
code. These “flaky tests” are difficult to detect and debug.
They are often due to varied causes such as faulty test

code. One kind of flaky test is the order-dependent flaky test
[1]. Previous work [1], classifies order-dependent flaky tests
as tests that pass or fail depending on the order in which
they are run.

iDFlakies is a tool designed to detect order-dependent flaky
tests in Java projects [1]. It works by running a number of
rounds during which it changes the order in which a class’
tests are run and attempts a random order each round. The
tool determines if a test is order-dependent and outputs its
results after the specified number of rounds. However, as
the tool must repeatedly run a project’s tests in different
orders, the time cost of the tool can become lengthy on
larger projects. Larger test suites can take a large amount
of time to run which can stretch into days or weeks, which
significantly hurts developer productivity [2]. In such
situations, it can be difficult to use a tool such as iDFlakies
to find flaky tests in the project as it can add unwanted time
to the development cycle.

We have added additional functionality for iDFlakies which
allows for it to amortize the time spent detecting flaky tests
by running for less rounds over multiple versions of a
project. We named this modified tool iDSpeedy. It adds a
new “incremental” configuration to iDFlakies which saves
data on test orders between versions of the project.

We found that iDSpeedy was able to find a similar number
of flaky tests in all of the projects it was run on in runtimes
that were relatively close to that of iDFlakies. In one case,
iDSpeedy was able to find 33 more flaky tests in one project
than iDFlakies was. Overall, it appears that the tool is able
to run as efficiently over multiple versions. The project can
be found at github.com/gkd248/iDSpeedy.

2​ MOTIVATION
While there are now many tools to identify and solve
different types of flakiness in software projects, very few
were designed with CICD pipelines in mind. We wanted to
extend iDFlakies so it would be more feasible to integrate
into an industrial software pipeline. The main factor to

address for this integration is the overhead required to run
the tool after every commit. While iDFlakies does remember
previous orders ran between rounds, it does not remember
previous orders ran between executions of the tool. This is
a missed opportunity when attempting to integrate the tool
into the pipeline since orders could be repeated over
multiple executions because of the lack of tracking. This can
result in unnecessary overhead since the same test orders
could be running every commit. Additionally by splitting up
the overall functionality of iDFlakies over multiple commits
the same total number of rounds can be run, but at lower
overhead per commit.

Our tool, iDSpeedy, tracks the orders run between commits,
so that flaky tests can be identified after every commit while
not having an overhead as expensive as a full run of
iDFlakies. Over multiple commits enough rounds will have
been run that would be equivalent to a full iDFlakies
execution. Instead of choosing a full run of iDFlakies with
every commit, which would have a significantly higher
overhead, or running iDFlakies less frequently the
developer would have the best of both worlds. They would
be getting a flaky report after each commit and not having to
deal with significant runtime overhead.

3​ PRIOR WORK
Our tool, iDSpeedy, is an extension of iDFlakies, a tool
developed by Lam et al. which detects and partially
classifies flaky tests [1]. It works by running a number of
rounds during which it changes the order in which a class’
tests are run and attempts a random order each round. The
tool determines if a test is order-dependent and outputs its
results after the specified number of rounds. However, as
the tool must repeatedly run a project’s tests in different
orders, the time cost of the tool can become lengthy on
larger projects. We use iDFlakies’ underlying logic within
iDSpeedy, but manipulate how test orders are generated by
treating new tests differently than old tests. We also add
logic to enable iDFlakies to work over different commits by
tracking orders previously used.

4​ IMPLEMENTATION
Since our tool is an extension of iDFlakies we started our
implementation with a fork of iDFlakies from GitHub.
iDFlakies is made up of multiple different testrunners that
allow the user to specify how they want their test orders to
be generated. We added our own, “incremental,” to the
options and created our own shuffler called
IncrementalShuffler.java. Each time a round is executed a
shuffler is called that handles generating the test order that
will be run. After the test order is generated it is passed into
ExecutingDetector.java which handles identifying the flaky

tests based on the order generated. We did not change any
logic within ExecutingDetector.java, we only added the
functionality to keep track of flaky tests identified between
versions.

4.1​ Incremental Shuffler
Our incrementalShuffler.java is unique because it handles
new tests differently and ensures test orders aren’t rerun.
We keep track of what tests were included in the previous
commit of the project and on the next commit we compare
all tests and identify any new tests. We then run the new
tests once at the front of all tests within the class and once
at the end of all tests since that is a very common location
to identify new tests as flaky. Once all new tests have been
processed we generate a random order and check that it
hasn’t been run yet.

4.2​ Tracking Data
To extend iDFlakies’ functionality to build up incrementally
across versions we needed to adjust how certain data is
written. We had to adjust the flaky list file, and write to our
own files to keep track of test orders run and the current
pool of tests for the project.

Normally, the flaky-lists.json file overwrites whatever is in it
previously. With the incremental runner we needed to
append to this file so the list of flaky tests continues to grow
the more iDSpeedy is run. To do this we added logic to
append instead of overwrite the file when the runner is
incremental.

We also added a folder called incremental to the
.dtfixingtools directory to keep two files. We have a file to
keep track of test orders run and the current pool of tests.
To keep track of test orders we keep track of orders during
the run in a data structure and then write to the file once we
are done running all rounds. For the pool of tests we utilize
a part of code that iDFlakies already has and write the
maven provided list of tests to a file to later identify new
tests. At the beginning of each run we load in all the tests
from the previous run and compare that to the current pool
of tests. By doing this we identify what tests are new to the
current commit and run them at the beginning and end
accordingly.

5​ EXPERIMENTAL SETUP
To ensure that we had a collection of useful test suites with
order-dependent flaky tests, we decided to utilize the same
projects that are mentioned in the original iDFlakies paper
[1]. As the paper mentioned that several developers had
fixed detected flaky tests, we only ran iDSpeedy on commits

EE 382V FALL ‘20, Austin, Texas USA A. Philips, G. Darnell

that iDFlakies was run on in the original paper and commits
that preceded them. We ran all of the projects using JDK
1.8 and iDSpeedy as a Maven plugin.

5.1​ RQ 1: Does iDSpeedy retain the same
accuracy as iDFlakies?

iDSpeedy’s method of creating test orders differs from
iDFlakies’ “random-class-method” configuration as it puts
new tests at the front and end of two subsequent test
orders. To ensure that this change did not impact
iDSpeedy’s accuracy, we wanted to run both tools on the
same version of the project and ensure that its ability to find
flaky tests was comparable to iDFlakies. iDFlakies’ Github
repository recommends running the tool on the
“random-class-method'' configuration 20 times as the tool’s
default settings. We ran both tools for 20 rounds on the
version of the project used in the original paper. We then
compared the number of flaky tests found by iDFlakies and
iDSpeedy.

5.2​ RQ 2: How does the accuracy and
runtime of iDSpeedy and iDFlakies
compare when run the same number of
total rounds?

To judge whether iDSpeedy was able to efficiently find flaky
tests over multiple versions compared to iDFlakies, we ran
iDSpeedy 5 rounds on five sequential versions. We used
the git version in the iDFlakies paper and its four preceding
commits. In this way, iDSpeedy also ran 25 times overall on
the project. We then ran iDFlakies 25 times overall on the
latest version of the five. We recorded the amount of time
spent by the tool and the number of flaky tests it found. We
also recorded the amount of unique flaky tests each tool
identified over the 25 rounds.

5.3​ RQ 3: How does the accuracy and
runtime of iDSpeedy and iDFlakies
compare when run the same number of
times on each version?

To see how efficient iDSpeedy was on each version of the
projects, we compared the amount of time that iDFlakies
would run on all versions of the project with the same
number of rounds. We ran iDFlakies on each of the five
versions five times and recorded how much time it took on
each version. We then compared it to the time taken by
iDSpeedy based on results from the previous step of the
experiment. We also recorded the amount of unique flaky
tests each tool identified over the 25 rounds.

6​ RESULTS
To compile results we cloned each project and modified the
pom.xml of all 5 versions of all projects as needed to run
both tools on them. We then recorded the number of flaky
tests identified and the total runtime of the tool in a
spreadsheet which can be found at https://bit.ly/2INcwn4.
Our results for each research question are below.

6.1​ RQ 1 Results
Research question one focused on checking that we did not
manipulate iDFlakies’ framework for identifying flaky tests.
By running both tools for the same number of rounds on the
same version of projects, we expected to have very similar
results. Our expectations were correct, and iDSpeedy only
missed 4 total flaky tests out of 279. Missing only 1.4% of
the flaky tests that iDFlakies identified is not a significant
difference and also could be attributed to the randomness of
the tools when generating test orders. We believe that this
shows iDSpeedy’s test order generation is as accurate as
iDFlakies.

Figure 1: RQ 1 Data Results Excluding Projects with No
Flaky Tests

6.2​ RQ 2 Results
Research question 2 focused on if iDSpeedy’s runtime and
accuracy over multiple versions was comparable to that of
iDFlakies. From the collected results, we can see that
IDFlakies was able to find as many flaky tests in all of the
projects the tools were run on. In most of the projects, both
tools had relatively similar runtimes. In six out of the nine
projects, iDSpeedy was slower than iDFlakies. However,
the difference in time in most of these projects was not very
large. It appears that none of the projects, except for
Java-WebSocket, had more than a 300 second difference in

iDSpeedy EE 382V FALL ‘20, Austin, Texas USA

Project iDSpeedy #
Flaky Tests

iDFlakies #
Flaky Tests

TooTallNate/Java-
WebSocket

268 268

kagkarlsson/db-sc
heduler

4 6

tbsalling/aismessa
ges

2 2

spring-projects/spr
ing-data-envers

0 2

jhipster/jhipster-re
gistry

1 1

runtime. Java-WebSocket had the most extreme difference
in runtimes, where iDSpeedy took double the time of
iDFlakies. However, iDSpeedy was able to find 33 more
flaky tests within the project than iDFlakies. iDFlakies uses
a verification method to check that tests are flaky which
takes additional time to run. Due to the number of additional
flaky tests detected, it is possible that the verification time of
the new tests can account for the increase in runtime.

We can conclude that iDSpeedy was able to maintain
accuracy over the multiple versions it ran on. Despite not
being faster on all of the projects, iDSpeedy maintained a
close runtime to iDFlakies. It is possible that this runtime
difference could be improved if iDSpeedy has been running
on several more commits over time.

Figure 2:​ RQ 2 Data Results

6.3​ RQ 3 Results
Research question three focused on the comparison of the
two tools when both are run five times on five versions of
the same project. FIrst, looking at runtime the values are
very similar except for db-scheduler where iDSpeedy takes
twice as long to execute. For this project it is important to
note that iDSpeedy finds four flaky tests while iDFlakies
finds zero. Since, verifying a test is flaky does require
additional overhead this could explain this drastically longer
runtime compared to the other projects. Secondly, looking
at the number of flaky tests identified shows that iDSpeedy
performed just as well as iDFlakies, and in one case better.

Figure 3:​ RQ 3 Data Results

7​ FUTURE WORK
The future work for iDSpeedy includes completing a pull
request to add our changes to the iDFlakies framework,
additional logic for running new tests if we don’t have
enough rounds to run each at the front and back, and a
smarter way to run tests after a new test is identified. We
would like to work with the authors of iDFlakies to integrate
our work into their framework. Since we worked off the
iDFlakies project and added our own classes to work within
the iDFlakies framework we should be able to communicate
with the authors to complete a pull request.

Within the implementation we currently have two spots that
could be improved if we had more time. First, when new

EE 382V FALL ‘20, Austin, Texas USA A. Philips, G. Darnell

Project iDSpeedy
Runtime
(sec)

of
Flaky
Tests

iDFlakies
Runtime
(sec)

of
Flaky
Tests

TooTallNa
te/Java-W
ebSocket

12299.9 293 6937.0 260

kagkarlss
on/db-sch
eduler

2045.2 4 1823.1 4

flaxsearch
/luwak

529.7 0 802.5 0

jhipster/jhi
pster-regis
try

468.2 1 316.6 1

outbrain/al
etheia

368.5 0 379.3 0

spring-proj
ects/sprin
g-data-en
vers

139.2 2 113.0 2

codingchili
/excelastic

112.0 0 103.1 0

odrotboh
m/sos/00-
monolith

97.2 0 97.6 0

tbsalling/ai
smessage
s

46.7 2 28.2 2

Project iDSpeedy
Runtime
(sec)

of
Flaky
Tests

iDFlakies
Runtime
(sec)

of
Flaky
Tests

kagkarlss
on/db-sch
eduler

2045.2 4 1407.5 0

jhipster/jhi
pster-regi
stry

468.2 1 467.7 1

spring-pro
jects/sprin
g-data-en
vers

139.2 2 121.7 2

odrotboh
m/sos/00-
monolith

97.2 0 84.1 0

tbsalling/a
ismessag
es

46.7 2 48.0 2

tests are run at the front and back of test orders we do not
have a way of saving which new tests haven’t been run yet.
In the case that there aren’t enough runs to cover each new
test at the front and back those new tests will not be run at
the front and back. This could be avoided by writing the
tests to a file and reading that in the next time iDSpeedy is
executed. Secondly, our current implementation erases any
test orders that have been run once new tests are identified
since the pool of tests is different. It would make sense to
use the previous test orders that have been run to decide
what orders should be run first with the new tests. This
option is complex and could be implemented a few ways.
One option could be to run the new tests at the front or back
of the previously run orders. Another option would be to run
the new tests at the front and back of only the test orders
that presented a flaky test to more efficiently attempt to
identify new flaky tests. We would also like to expand the
number of projects that we have run the tool on and see
how it performs on more recent ones.

8​ CONCLUSION
Overall we were successful in our attempt to extend
iDFlakies to work over versions of a project. iDSpeedy was
able to retain a similar accuracy to iDFlakies while also
retaining a similar runtime when comparing an equal
number of rounds. By writing to the file directory to save
pertinent data and then reading from these files every
execution we were able to pass data between versions. We
also added logic to treat new tests differently so potential
new flakiness added in a new commit is identified quicker.

However, there is still room for improvement. Our time
frame limited the work we could complete, but we have
ideas for the future work. Using past runs to choose what
orders new tests be run at the front and back could further
increase the efficiency by finding a new source of flakiness
in less rounds. By saving previous runs there are a
multitude of other possibilities, since the stored data can be
used to inform smarter choices of test orders instead of the
current way of just randomizing the test order.

ACKNOWLEDGMENTS
Thank you to Professor Shi for helping us throughout the
semester. We had quite a few questions about the inner
workings of iDFlakies and experimental setup. His answers
and suggestions helped shape this paper and possible
future work.

REFERENCES
[1] Wing Lam, Reed Oei, August Shi, Darko Marinov and Tao Xie.

2019. iDFlakies: A Framework for Detecting and Partially
Classifying Flaky Tests. In ​2019 12th IEEE Conference on
Software Testing, Validation and Verification (ICST), ​Xi'an,
China, 312-322. DOI:https://doi.org/10.1109/ICST.2019.00038.

[2] Thomas Bach, Ralf Pannemans, and Sascha Schwedes. 2018.
Effects of an Economic Approach for Test Case Selection and
Reduction for a Large Industrial Project. In ​2018 IEEE
International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), ​Vasteras, Sweden, 374-379.
DOI:https://doi.org/10.1109/ICSTW.2018.00076.

iDSpeedy EE 382V FALL ‘20, Austin, Texas USA

